

Mobile Ad hoc Networks for Space and Surface Systems

Daniel R. Oldham Ph.D.

NASA Glenn Research Center

June 5, 2003

Introduction

- NASA's Wireless Communication System
 - Fixed infrastructure SGLS, STDN, DSN
 - Command uplink with downlink repeat back
 - Telemetry and mission data downlink
 - Optimized for power, mass and volume
 - Protocols mostly based on USB/CCSDS
 - Future goal total communications integration
 - New antennas, radios and protocols
 - Fixed versus Ad hoc infrastructure?

Fixed versus Ad Hoc

- Traditional fixed wireless networks
 - Use Base Station or Access Point
 - Mobile nodes within range
 - Cellular phone networks AMPS CDMA GSM
 - LAN networks 802.11a 802.11b 802.11g
- Ad Hoc wireless networks
 - Use Mobile nodes and Gateway for reach back
 - IETF Mobile Ad hoc NETworks or MANET

Mobile Ad hoc NETworks

- When fixed infrastructure solution is unavailable
 - Energy constraints
 - Destroyed or damaged
 - At maximum capacity
 - Costs too much for service
 - Issues with access, trust or registration
- Autonomous system of mobile routers
 - Free to move randomly topology change
 - Stand alone network or with reach back

MANET Example

Example: $p=1/R^4$ for 2 meters

- •A-C 256 mWatts
- •A-B B-C 16 + 16 = 32 mWatts

- A and B within range
- B and C within range
- B is router for A and C
 - As nodes move need to find another route
- Shortest path solution is based on cost calculation
 - Bellman-Ford
 - Dijkstra algorithm
- Complexity grows with more nodes

MANET Protocol Types

- Pro-active Timer driven
 - Optimized Link State (OLSR)
 - Topology Broadcast based on Reverse-Path Forwarding routing protocol (TBRPF)
- Reactive Interrupt driven
 - Ad hoc On Demand distance Vector routing protocol (AODV)
 - Dynamic Source Routing protocol (DSR)

MANET Assumptions

- Nodes work together
 - Share standard protocol
 - No interference play together fairly
- No duplicate (IP) addresses
 - Handled outside the MANET protocol
- Share same wireless channel
 - Use omni directional antenna

MANET Networks

- Characteristics
 - Dynamic topologies
 - Bandwidth and energy constraints
 - Limited physical security
- Metrics
 - Size of network number of nodes
 - Network connectivity average degree per node
 - Topology rate of change
 - Link capacity

MANET Metrics

- Data throughput and delay
- Route acquisition time
- Percent out of order deliver
- Efficiency
 - Number of extra hops compared to optimal
 - Protocol overhead
 - Amount of control overhead compared to data

802.11 MAC

- Two modes of operation
 - Point to multipoint Access point mode
 - 2048 total nodes 20 recommended
 - Point to point Ad hoc mode
 - Unlimited nodes 10 recommended
- 2.4 or 5 Ghz frequency bands
- 300 meters range hidden node problem
- 128 bit cipher key has security flaw
- No space qualified 802.11 device available

Satellite Configurations

- Stand alone Satellites
 - Store and dump operations
 - Example: IKONS building more ground stations
- Distributed Spacecraft Constellations
 - Use crosslink communications to share information
 - Example: Iridium, GPS
- Formation Flying Missions
 - Require crosslink communications to maintain position
 - Example: Techsat 21, MAXIM

Distributed Spacecraft Constellations

- Orbits around Earth or other planetary bodies
- Rely on ground segment
 - Navigation
 - Command and Control
 - Orbital corrections
- Example: Iridium
 - Six orbital planes
 - Eleven satellites in each plane

Iridium Orbital Planes

- Iridium satellites have almost zero relative motion between the same and adjacent orbital planes
 - Minimal Doppler shift
 - Constant communications
- At orbital boundary, on coming satellites have large relative motion between satellites
 - Large Doppler shift
 - Intermittent communications

General Dynamics

Iridium Crosslinks

- Fore & Aft fixed beams for satellites in same orbital plane
- Steerable, gimbaled beam on each side for linking with adjacent orbital planes
- Each beam utilizes independent antenna & transmitter hardware

GPS Crosslink System

- UHF TDMA Frequency Hopped Spread Spectrum Communications System
- Provides Inter-Satellite RF Link to Support AutoNav Function
 - Makes Accurate (<.5 meter)
 Dual Frequency Range
 Measurements Between
 Satellites
- Broadcast architecture reaches all line-of-sight satellites simultaneously
- Each satellite transmits in its assigned time interval

Formation Flying Missions

- Involve two or more satellites
 - Maintain position with respect to each other
- Orbits around Sun or other planetary bodies
- Rely on ground segment
 - Navigation
 - Command and Control
- Example: MAXIM
 - Micro-Arcsecond X-ray Imaging Mission

MAXIM Formation

- MAXIM satellites have zero relative motion between satellites
 - No Doppler shift
 - Constant communications
- Maintain formation by sharing navigation and command information in real time by crosslinks

Wireless Geophone

Proximity Networks

- Collection of data sensors with communications services
 - Sense the environment
 - Process the data
 - Send information through network to end users
- Example: Geophones
 - Low frequency microphone

 - Wireless communications

Summary

- MANET
 - Focused on router functions for mobile nodes
 - Moving in random and unpredictable manner
 - Use when fixed infrastructure solution is unavailable
 - Issue need to reach outside router layer to help resolve complexity issues
- Satellites have predictable orbits
 - Fixed infrastructure is optimal configuration
- Proximity networks
 - Use MANET technology to address energy constraints

Thank-you

Daniel R. Oldham Ph.D.

Oldham@grc.nasa.gov

(216) 433-6307

NASA Glenn Research Center